# Python program to solve quadratic equation

## Python program to solve quadratic equation

Given a quadratic equation the task is solve the equation or find out the roots of the equation. Standard form of quadratic equation is –

ax2 + bx + c
where,
a, b, and c are coefficient and real numbers and also a ≠ 0.
If a is equal to 0 that equation is not valid quadratic equation.


Examples:

Input :a = 1, b = 2, c = 1
Output :
Roots are real and same
-1.0

Input :a = 2, b = 2, c = 1
Output :
Roots are complex
-0.5  + i 2.0
-0.5  - i 2.0

Input :a = 1, b = 10, c = -24
Output :
Roots are real and different
2.0
-12.0


Method 1: Using the direct formula

Using the below quadratic formula we can find the root of the quadratic equation.

There are following important cases.

If b*b < 4*a*c, then roots are complex
(not real).
For example roots of x2 + x + 1, roots are
-0.5 + i1.73205 and -0.5 - i1.73205

If b*b == 4*a*c, then roots are real
and both roots are same.
For example, roots of x2 - 2x + 1 are 1 and 1

If b*b > 4*a*c, then roots are real
and different.
For example, roots of x2 - 7x - 12 are 3 and 4
 # Python program to find roots of quadratic equation import math      # function for finding roots def equationroots( a, b, c):        # calculating discriminant using formula     dis = b * b - 4 * a * c      sqrt_val = math.sqrt(abs(dis))            # checking condition for discriminant     if dis > 0:          print(" real and different roots ")          print((-b + sqrt_val)/(2 * a))          print((-b - sqrt_val)/(2 * a))            elif dis == 0:          print(" real and same roots")          print(-b / (2 * a))            # when discriminant is less than 0     else:         print("Complex Roots")          print(- b / (2 * a), " + i", sqrt_val)          print(- b / (2 * a), " - i", sqrt_val)    # Driver Program  a = 1 b = 10 c = -24   # If a is 0, then incorrect equation if a == 0:          print("Input correct quadratic equation")    else:     equationroots(a, b, c)

Output:

real and different roots
2.0
-12.0


Method 2: Using the complex math module

First, we have to calculate the discriminant and then find two solution of quadratic equation using cmath module.

 # import complex math module import cmath   a = 1 b = 4 c = 2   # calculating  the discriminant dis = (b**2) - (4 * a*c)   # find two results ans1 = (-b-cmath.sqrt(dis))/(2 * a) ans2 = (-b + cmath.sqrt(dis))/(2 * a)   # printing the results print('The roots are') print(ans1) print(ans2)

Output:

The roots are
(-3.414213562373095+0j)
(-0.5857864376269049+0j)

Last Updated on November 13, 2021 by admin

## Python append to a filePython append to a file

Python append to a file While reading or writing to a file, access mode governs

## Python – Sort a List according to the Length of the ElementsPython – Sort a List according to the Length of the Elements

Python | Sort a List according to the Length of the Elements In this program,

## matplotlib.pyplot.imshow() in Pythonmatplotlib.pyplot.imshow() in Python

matplotlib.pyplot.imshow() in Python Matplotlib is a library in Python and it is numerical – mathematical extension

## Python For LoopsPython For Loops

Python For Loops Python For loop is used for sequential traversal i.e. it is used for

## How to Do a vLookup in Python using pandasHow to Do a vLookup in Python using pandas

When working with data in Python, there are often situations where you need to combine

## Convert list of nested dictionary into Pandas dataframeConvert list of nested dictionary into Pandas dataframe

Python – Convert list of nested dictionary into Pandas dataframe   Given a list of

## Python InheritancePython Inheritance

Inheritance in Python Inheritance is the capability of one class to derive or inherit the

## Python – os.listdir() methodPython – os.listdir() method

Python | os.listdir() method os.listdir() method in python is used to get the list of all