Pandas Series.values



Python | Pandas Series.values

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.values attribute return Series as ndarray or ndarray-like depending on the dtype.

Syntax:Series.values

Parameter : None

Returns : ndarray

Example #1: Use Series.values attribute to return the values in the given series object as an ndarray.

# importing pandas as pd
import pandas as pd
 
# Creating the Series
sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio'])
 
# Creating the row axis labels
sr.index = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5'
 
# Print the series
print(sr)

Output :

Now we will use Series.values attribute to return the values of the given Series object as an ndarray.

# return an ndarray
sr.values

Output :


As we can see in the output, the Series.values attribute has returned an ndarray object containing the values of the given Series object.

Example #2 : Use Series.values attribute to return the values in the given series object as an ndarray.

# importing pandas as pd
import pandas as pd
 
# Creating the Series
sr = pd.Series(['1/1/2018', '2/1/2018', '3/1/2018', '4/1/2018'])
 
# Creating the row axis labels
sr.index = ['Day 1', 'Day 2', 'Day 3', 'Day 4']
 
# Print the series
print(sr)

Output :

Now we will use Series.values attribute to return the values of the given Series object as an ndarray.

# return an ndarray
sr.values

Output :

As we can see in the output, the Series.values attribute has returned an ndarray object containing the values of the given Series object.

 

Last Updated on October 24, 2021 by admin

Leave a Reply

Your email address will not be published. Required fields are marked *

Recommended Blogs

Highlight the negative values red and positive values black in Pandas DataframeHighlight the negative values red and positive values black in Pandas Dataframe



Highlight the negative values red and positive values black in Pandas Dataframe Let’s see various methods to Highlight the positive values red and negative values black in Pandas Dataframe. First, Let’s make a Dataframe: # Import Required Libraries import pandas as