numpy.log() in Python
The numpy.log() is a mathematical function that helps user to calculate Natural logarithm of x where x belongs to all the input array elements.
Natural logarithm log is the inverse of the exp(), so that log(exp(x)) = x. The natural logarithm is log in base e.
Syntax :numpy.log(x[, out] = ufunc ‘log1p’)
Parameters :array : [array_like] Input array or object.
out : [ndarray, optional] Output array with same dimensions as Input array, placed with result.Return :
An array with Natural logarithmic value of x; where x belongs to all elements of input array.
Code #1 : Working
# Python program explaining # log() function import numpy as np in_array = [ 1 , 3 , 5 , 2 * * 8 ] print ( "Input array : " , in_array) out_array = np.log(in_array) print ( "Output array : " , out_array) print ( "\nnp.log(4**4) : " , np.log( 4 * * 4 )) print ( "np.log(2**8) : " , np.log( 2 * * 8 )) |
Output :
Input array : [1, 3, 5, 256] Output array : [ 0. 1.09861229 1.60943791 5.54517744] np.log(4**4) : 5.54517744448 np.log(2**8) : 5.54517744448
Code #2 : Graphical representation
# Python program showing # Graphical representation # of log() function import numpy as np import matplotlib.pyplot as plt in_array = [ 1 , 1.2 , 1.4 , 1.6 , 1.8 , 2 ] out_array = np.log(in_array) print ( "out_array : " , out_array) plt.plot(in_array, in_array, color = 'blue' , marker = "*" ) # red for numpy.log() plt.plot(out_array, in_array, color = 'red' , marker = "o" ) plt.title( "numpy.log()" ) plt.xlabel( "out_array" ) plt.ylabel( "in_array" ) plt.show() |
Output :
out_array : [ 0. 0.18232156 0.33647224 0.47000363 0.58778666 0.69314718]
References : https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.log.html#numpy.log
.
Last Updated on November 1, 2021 by admin