# Maximum and minimum of an array using minimum number of comparisons

## Maximum and minimum of an array using minimum number of comparisons

Write a C function to return minimum and maximum in an array. Your program should make the minimum number of comparisons.

First of all, how do we return multiple values from a C function? We can do it either using structures or pointers.
We have created a structure named pair (which contains min and max) to return multiple values.

 `struct` `pair` `{` `  ``int` `min;` `  ``int` `max;` `}; `

And the function declaration becomes: struct pair getMinMax(int arr[], int n) where arr[] is the array of size n whose minimum and maximum are needed.

METHOD 1 (Simple Linear Search)
Initialize values of min and max as minimum and maximum of the first two elements respectively. Starting from 3rd, compare each element with max and min, and change max and min accordingly (i.e., if the element is smaller than min then change min, else if the element is greater than max then change max, else ignore the element)

 `// C++ program of above implementation` `#include` `using` `namespace` `std;` `// Pair struct is used to return` `// two values from getMinMax()` `struct` `Pair` `{` `    ``int` `min;` `    ``int` `max;` `};` `struct` `Pair getMinMax(``int` `arr[], ``int` `n)` `{` `    ``struct` `Pair minmax;    ` `    ``int` `i;` `    ` `    ``// If there is only one element` `    ``// then return it as min and max both` `    ``if` `(n == 1)` `    ``{` `        ``minmax.max = arr[0];` `        ``minmax.min = arr[0];    ` `        ``return` `minmax;` `    ``}` `    ` `    ``// If there are more than one elements,` `    ``// then initialize min and max` `    ``if` `(arr[0] > arr[1])` `    ``{` `        ``minmax.max = arr[0];` `        ``minmax.min = arr[1];` `    ``}` `    ``else` `    ``{` `        ``minmax.max = arr[1];` `        ``minmax.min = arr[0];` `    ``}` `    ` `    ``for``(i = 2; i < n; i++)` `    ``{` `        ``if` `(arr[i] > minmax.max)    ` `            ``minmax.max = arr[i];` `            ` `        ``else` `if` `(arr[i] < minmax.min)    ` `            ``minmax.min = arr[i];` `    ``}` `    ``return` `minmax;` `}` `// Driver code` `int` `main()` `{` `    ``int` `arr[] = { 1000, 11, 445,` `                  ``1, 330, 3000 };` `    ``int` `arr_size = 6;` `    ` `    ``struct` `Pair minmax = getMinMax(arr, arr_size);` `    ` `    ``cout << ``"Minimum element is "` `         ``<< minmax.min << endl;` `    ``cout << ``"Maximum element is "` `         ``<< minmax.max;` `         ` `    ``return` `0;` `}` `// This code is contributed by nik_3112`

Output:

```Minimum element is 1
Maximum element is 3000```

Time Complexity: O(n)

In this method, the total number of comparisons is 1 + 2(n-2) in the worst case and 1 + n – 2 in the best case.
In the above implementation, the worst case occurs when elements are sorted in descending order and the best case occurs when elements are sorted in ascending order.

METHOD 2 (Tournament Method)
Divide the array into two parts and compare the maximums and minimums of the two parts to get the maximum and the minimum of the whole array.

```Pair MaxMin(array, array_size)
if array_size = 1
return element as both max and min
else if arry_size = 2
one comparison to determine max and min
return that pair
else    /* array_size  > 2 */
recur for max and min of left half
recur for max and min of right half
one comparison determines true max of the two candidates
one comparison determines true min of the two candidates
return the pair of max and min```

Implementation

 `// C++ program of above implementation` `#include` `using` `namespace` `std;` `// structure is used to return` `// two values from minMax()` `struct` `Pair` `{` `    ``int` `min;` `    ``int` `max;` `};` `struct` `Pair getMinMax(``int` `arr[], ``int` `low,` `                                 ``int` `high)` `{` `    ``struct` `Pair minmax, mml, mmr;    ` `    ``int` `mid;` `    ` `    ``// If there is only one element` `    ``if` `(low == high)` `    ``{` `        ``minmax.max = arr[low];` `        ``minmax.min = arr[low];    ` `        ``return` `minmax;` `    ``}` `    ` `    ``// If there are two elements` `    ``if` `(high == low + 1)` `    ``{` `        ``if` `(arr[low] > arr[high])` `        ``{` `            ``minmax.max = arr[low];` `            ``minmax.min = arr[high];` `        ``}` `        ``else` `        ``{` `            ``minmax.max = arr[high];` `            ``minmax.min = arr[low];` `        ``}` `        ``return` `minmax;` `    ``}` `    ` `    ``// If there are more than 2 elements` `    ``mid = (low + high) / 2;` `    ``mml = getMinMax(arr, low, mid);` `    ``mmr = getMinMax(arr, mid + 1, high);` `    ` `    ``// Compare minimums of two parts` `    ``if` `(mml.min < mmr.min)` `        ``minmax.min = mml.min;` `    ``else` `        ``minmax.min = mmr.min;    ` `    ` `    ``// Compare maximums of two parts` `    ``if` `(mml.max > mmr.max)` `        ``minmax.max = mml.max;` `    ``else` `        ``minmax.max = mmr.max;    ` `    ` `    ``return` `minmax;` `}` `// Driver code` `int` `main()` `{` `    ``int` `arr[] = { 1000, 11, 445,` `                  ``1, 330, 3000 };` `    ``int` `arr_size = 6;` `    ` `    ``struct` `Pair minmax = getMinMax(arr, 0,` `                             ``arr_size - 1);` `                             ` `    ``cout << ``"Minimum element is "` `         ``<< minmax.min << endl;` `    ``cout << ``"Maximum element is "` `         ``<< minmax.max;` `         ` `    ``return` `0;` `}` `// This code is contributed by nik_3112`

Output:

```Minimum element is 1
Maximum element is 3000```

Time Complexity: O(n)

Total number of comparisons: let the number of comparisons be T(n). T(n) can be written as follows:

```
T(n) = T(floor(n/2)) + T(ceil(n/2)) + 2
T(2) = 1
T(1) = 0```

If n is a power of 2, then we can write T(n) as:

`   T(n) = 2T(n/2) + 2`

After solving the above recursion, we get

`  T(n)  = 3n/2 -2`

Thus, the approach does 3n/2 -2 comparisons if n is a power of 2. And it does more than 3n/2 -2 comparisons if n is not a power of 2.

METHOD 3 (Compare in Pairs)
If n is odd then initialize min and max as first element.
If n is even then initialize min and max as minimum and maximum of the first two elements respectively.
For rest of the elements, pick them in pairs and compare their
maximum and minimum with max and min respectively.

 `// C++ program of above implementation` `#include` `using` `namespace` `std;` `// Structure is used to return` `// two values from minMax()` `struct` `Pair` `{` `    ``int` `min;` `    ``int` `max;` `};` `struct` `Pair getMinMax(``int` `arr[], ``int` `n)` `{` `    ``struct` `Pair minmax;    ` `    ``int` `i;` `    ` `    ``// If array has even number of elements` `    ``// then initialize the first two elements` `    ``// as minimum and maximum` `    ``if` `(n % 2 == 0)` `    ``{` `        ``if` `(arr[0] > arr[1])    ` `        ``{` `            ``minmax.max = arr[0];` `            ``minmax.min = arr[1];` `        ``}` `        ``else` `        ``{` `            ``minmax.min = arr[0];` `            ``minmax.max = arr[1];` `        ``}` `        ` `        ``// Set the starting index for loop` `        ``i = 2;` `    ``}` `    ` `    ``// If array has odd number of elements` `    ``// then initialize the first element as` `    ``// minimum and maximum` `    ``else` `    ``{` `        ``minmax.min = arr[0];` `        ``minmax.max = arr[0];` `        ` `        ``// Set the starting index for loop` `        ``i = 1;` `    ``}` `    ` `    ``// In the while loop, pick elements in` `    ``// pair and compare the pair with max` `    ``// and min so far` `    ``while` `(i < n - 1)` `    ``{        ` `        ``if` `(arr[i] > arr[i + 1])        ` `        ``{` `            ``if``(arr[i] > minmax.max)    ` `                ``minmax.max = arr[i];` `                ` `            ``if``(arr[i + 1] < minmax.min)        ` `                ``minmax.min = arr[i + 1];    ` `        ``}` `        ``else` `        ``{` `            ``if` `(arr[i + 1] > minmax.max)    ` `                ``minmax.max = arr[i + 1];` `                ` `            ``if` `(arr[i] < minmax.min)        ` `                ``minmax.min = arr[i];    ` `        ``}` `        ` `        ``// Increment the index by 2 as` `        ``// two elements are processed in loop` `        ``i += 2;` `    ``}        ` `    ``return` `minmax;` `}` `// Driver code` `int` `main()` `{` `    ``int` `arr[] = { 1000, 11, 445,` `                ``1, 330, 3000 };` `    ``int` `arr_size = 6;` `    ` `    ``Pair minmax = getMinMax(arr, arr_size);` `    ` `    ``cout << ``"nMinimum element is "` `        ``<< minmax.min << endl;` `    ``cout << ``"nMaximum element is "` `        ``<< minmax.max;` `        ` `    ``return` `0;` `}` `// This code is contributed by nik_3112`

Output:

```Minimum element is 1
Maximum element is 3000```

Time Complexity: O(n)

Total number of comparisons: Different for even and odd n, see below:

```       If n is odd:    3*(n-1)/2
If n is even:   1 Initial comparison for initializing min and max,
and 3(n-2)/2 comparisons for rest of the elements
=  1 + 3*(n-2)/2 = 3n/2 -2```

Second and third approaches make the equal number of comparisons when n is a power of 2.
In general, method 3 seems to be the best.

Last Updated on October 16, 2021 by admin

## Print a given matrix in spiral formPrint a given matrix in spiral form

Print a given matrix in spiral form Given a 2D array, print it in spiral

## Multidimensional Arrays in JavaMultidimensional Arrays in Java

Multidimensional Arrays in Java Multidimensional Arrays can be defined in simple words as array of

## Write a program to reverse an array or stringWrite a program to reverse an array or string

Program to reverse an array or string Given an array (or string), the task is

## Program to find largest element in an arrayProgram to find largest element in an array

Program to find largest element in an array Given an array, find the largest element

## Largest Sum Contiguous SubarrayLargest Sum Contiguous Subarray

Largest Sum Contiguous Subarray Write an efficient program to find the sum of contiguous subarray

## Stock Buy Sell to Maximize ProfitStock Buy Sell to Maximize Profit

Stock Buy Sell to Maximize Profit The cost of a stock on each day is

## Arrays in JavaArrays in Java

Java Arrays   An array is a group of like-typed variables that are referred to

## Sort an array of 0s, 1s and 2sSort an array of 0s, 1s and 2s

Sort an array of 0s, 1s and 2s Given an array A[] consisting 0s, 1s