Limited rows selection with given column in Pandas | Python



Limited rows selection with given column in Pandas | Python

Methods in Pandas like iloc[]iat[] are generally used to select the data from a given dataframe. In this article, we will learn how to select the limited rows with given columns with the help of these methods.

Example 1: Select two columns

# Import pandas package 
import pandas as pd 
   
# Define a dictionary containing employee data 
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'], 
        'Age':[27, 24, 22, 32], 
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'], 
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']} 
   
# Convert the dictionary into DataFrame  
df = pd.DataFrame(data) 
   
# select three rows and two columns 
print(df.loc[1:3, ['Name', 'Qualification']])

Output:

     Name Qualification
1  Princi            MA
2  Gaurav           MCA
3    Anuj           Phd

Example 2: First filtering rows and selecting columns by label format and then Select all columns.

# Import pandas package 
import pandas as pd 
   
# Define a dictionary containing employee data 
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'], 
        'Age':[27, 24, 22, 32], 
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'], 
        'Qualification':['Msc', 'MA', 'MCA', 'Phd'
       
 
# Convert the dictionary into DataFrame  
df = pd.DataFrame(data) 
   
# .loc DataFrame method 
# filtering rows and selecting columns by label format 
# df.loc[rows, columns] 
# row 1, all columns 
print(df.loc[0, :] )

Output:

 

 

Address          Delhi
Age                 27
Name               Jai
Qualification      Msc
Name: 0, dtype: object

Example 3: Select all or some columns, one to another using .iloc.

# Import pandas package 
import pandas as pd 
   
# Define a dictionary containing employee data 
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'], 
        'Age':[27, 24, 22, 32], 
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'], 
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']} 
   
# Convert the dictionary into DataFrame  
df = pd.DataFrame(data) 
   
# iloc[row slicing, column slicing] 
print(df.iloc [0:2, 1:3] )

Output:

   Age    Name
0   27     Jai
1   24  Princi

 

Last Updated on October 20, 2021 by admin

Leave a Reply

Your email address will not be published. Required fields are marked *

Recommended Blogs