How to Drop rows in DataFrame by conditions on column values?
In this article, we are going to see several examples of how to drop rows from the dataframe based on certain conditions applied on a column.
Pandas provide data analysts a way to delete and filter data frame using dataframe.drop()
method. We can use this method to drop such rows that do not satisfy the given conditions.
Let’s create a Pandas dataframe.
# import pandas library import pandas as pd # dictionary with list object in values details = { 'Name' : [ 'Ankit' , 'Aishwarya' , 'Shaurya' , 'Shivangi' , 'Priya' , 'Swapnil' ], 'Age' : [ 23 , 21 , 22 , 21 , 24 , 25 ], 'University' : [ 'BHU' , 'JNU' , 'DU' , 'BHU' , 'Geu' , 'Geu' ], } # creating a Dataframe object df = pd.DataFrame(details, columns = [ 'Name' , 'Age' , 'University' ], index = [ 'a' , 'b' , 'c' , 'd' , 'e' , 'f' ]) df |
Output:
Example 1 : Delete rows based on condition on a column.
# import pandas library import pandas as pd # dictionary with list object in values details = { 'Name' : [ 'Ankit' , 'Aishwarya' , 'Shaurya' , 'Shivangi' , 'Priya' , 'Swapnil' ], 'Age' : [ 23 , 21 , 22 , 21 , 24 , 25 ], 'University' : [ 'BHU' , 'JNU' , 'DU' , 'BHU' , 'Geu' , 'Geu' ], } # creating a Dataframe object df = pd.DataFrame(details, columns = [ 'Name' , 'Age' , 'University' ], index = [ 'a' , 'b' , 'c' , 'd' , 'e' , 'f' ]) # get names of indexes for which # column Age has value 21 index_names = df[ df[ 'Age' ] = = 21 ].index # drop these row indexes # from dataFrame df.drop(index_names, inplace = True ) df |
Output :
Example 2 : Delete rows based on multiple conditions on a column.
# import pandas library import pandas as pd # dictionary with list object in values details = { 'Name' : [ 'Ankit' , 'Aishwarya' , 'Shaurya' , 'Shivangi' , 'Priya' , 'Swapnil' ], 'Age' : [ 23 , 21 , 22 , 21 , 24 , 25 ], 'University' : [ 'BHU' , 'JNU' , 'DU' , 'BHU' , 'Geu' , 'Geu' ], } # creating a Dataframe object df = pd.DataFrame(details, columns = [ 'Name' , 'Age' , 'University' ], index = [ 'a' , 'b' , 'c' , 'd' , 'e' , 'f' ]) # get names of indexes for which column Age has value >= 21 # and <= 23 index_names = df[ (df[ 'Age' ] > = 21 ) & (df[ 'Age' ] < = 23 )].index # drop these given row # indexes from dataFrame df.drop(index_names, inplace = True ) df |
Output :
Example 3 : Delete rows based on multiple conditions on different columns.
# import pandas library import pandas as pd # dictionary with list object in values details = { 'Name' : [ 'Ankit' , 'Aishwarya' , 'Shaurya' , 'Shivangi' , 'Priya' , 'Swapnil' ], 'Age' : [ 23 , 21 , 22 , 21 , 24 , 25 ], 'University' : [ 'BHU' , 'JNU' , 'DU' , 'BHU' , 'Geu' , 'Geu' ], } # creating a Dataframe object df = pd.DataFrame(details, columns = [ 'Name' , 'Age' , 'University' ], index = [ 'a' , 'b' , 'c' , 'd' , 'e' , 'f' ]) # get names of indexes for which # column Age has value >= 21 # and column University is BHU index_names = df[ (df[ 'Age' ] > = 21 ) & (df[ 'University' ] = = 'BHU' )].index # drop these given row # indexes from dataFrame df.drop(index_names, inplace = True ) df |
Output :
Last Updated on October 24, 2021 by admin