Convert CSV to Pandas Dataframe
In this article, we will discuss how to convert CSV to Pandas Dataframe.
In this article, we will explore efficient ways to convert CSV files into Pandas Dataframe. We will also discuss some best practices, data type handling, and advanced data manipulation techniques.
Convert CSV to Pandas Dataframe
We can read this CSV file into a Pandas Dataframe using read_csv
method :
# Import Pandas library import pandas as pd # Read the CSV file into a Pandas Dataframe df = pd.read_csv("pythonpandas.csv") # Display the Dataframe print(df)
Now, Let’s see more examples on converting CSV to Pandas Dataframe.
Handling CSV with Missing Headers
If your CSV file does not have column headers, you can specify them using the names parameter while reading the file.
# Assuming the CSV file has no headers and the columns are named 'Column1', 'Column2', etc. df = pd.read_csv("data.csv", names=['Column1', 'Column2', 'Column3', 'Column4']) # Display the Dataframe print(df)
Converting CSV with Custom Index
By default, Pandas generates a numeric index for the rows in the Dataframe. However, you can specify a custom column as the index using the index_col parameter.
# Assuming the 'ID' column should be used as the index df = pd.read_csv("data.csv", index_col='ID') # Display the Dataframe print(df)
Converting CSV with Text Qualifiers
If your CSV file uses text qualifiers (e.g., double quotes) to enclose fields, you can handle them using the quotechar parameter.
# Assuming the CSV file uses double quotes (") as text qualifiers df = pd.read_csv("data.csv", quotechar='"') # Display the Dataframe print(df)
Skipping Footer Rows
In some cases, a CSV file may contain footer rows that you want to skip while reading the data. You can do this using the skipfooter parameter.
# Skipping the last two rows in the CSV file df = pd.read_csv("data.csv", skipfooter=2) # Display the Dataframe print(df)
Specifying Data Types for Columns
To ensure specific data types for the columns, you can provide a dictionary to the dtype parameter.
# Assuming 'ID' should be treated as a string and 'Amount' as a floating-point number df = pd.read_csv("data.csv", dtype={'ID': str, 'Amount': float}) # Display the Dataframe print(df)
Handling CSV with Multiple Delimiters
For CSV files with multiple delimiters or irregular formatting, you can use the regex parameter to define the delimiter pattern.
# Assuming the CSV file uses semicolons (;) or tabs as delimiters df = pd.read_csv("data.csv", sep=';|\t', engine='python') # Display the Dataframe print(df)
Converting CSV with Non-English Characters
If your CSV file contains non-English characters (e.g., accented characters), you can specify the appropriate encoding using the encoding parameter.
# Assuming the CSV file uses UTF-8 encoding df = pd.read_csv("data.csv", encoding='utf-8') # Display the Dataframe print(df)
Handling Date and Time Formats
For CSV files with date and time columns in non-standard formats, you can use the date_parser parameter along with a custom date parsing function.
# Custom date parsing function to handle dates in the format 'dd/mm/yyyy' def custom_date_parser(date_string): return pd.to_datetime(date_string, format='%d/%m/%Y') # Assuming the 'Date' column contains # dates in the format 'dd/mm/yyyy' df = pd.read_csv("data.csv", parse_dates=['Date'], date_parser=custom_date_parser) # Display the Dataframe print(df)
Converting CSV with Thousand Separators
If your CSV file uses thousand separators (e.g., commas) in numeric fields, you can remove them using the thousands parameter.
# Assuming the 'Amount' column uses commas as thousand separators df = pd.read_csv("data.csv", thousands=',') # Display the Dataframe print(df)
Handling CSV with Multi-level Headers
If your CSV file has multi-level headers (also known as hierarchical headers), you can use the header parameter along with index_col to read and create a multi-level column index in the Dataframe.
# Assuming the CSV file has multi-level headers # Example CSV: # Name, Age, Occupation # , Male, Female # John, 28, Engineer # Alice, 34, Scientist # Bob, 23, Analyst # Read the CSV file with multi-level headers df = pd.read_csv("data.csv", header=[0, 1], index_col=0) # Display the Dataframe print(df)
Handling CSV with Non-Standard Missing Values
If your CSV file uses non-standard values to represent missing data, you can specify them using the na_values parameter.
# Assuming the CSV file uses 'N/A' and # 'NA' to represent missing values df = pd.read_csv("data.csv", na_values=['N/A', 'NA']) # Display the Dataframe print(df)
Converting CSV with Custom Date Format and Timezone
For CSV files containing date and time columns in a custom format with timezone information, you can use the date_parser parameter along with the datetime module to handle timezone-aware datetime objects.
# Custom date parsing function to handle dates with timezone information in the format 'YYYY-MM-DD HH:mm:ss TZ' from datetime import datetime, timezone, timedelta def custom_date_parser(date_string): dt = datetime.strptime(date_string, '%Y-%m-%d %H:%M:%S %Z') # Assuming the timezone offset is in hours, e.g., '+05:30' for India tz_offset = timedelta(hours=int(date_string[-6:-3]), minutes=int(date_string[-2:])) dt = dt.replace(tzinfo=timezone(tz_offset)) return dt # Assuming the 'Timestamp' column contains dates with timezone information df = pd.read_csv("data.csv", parse_dates=['Timestamp'], date_parser=custom_date_parser) # Display the Dataframe print(df)
Converting CSV with Complex Separators and Text Qualifiers
If your CSV file uses complex separators (e.g., a mix of commas and semicolons) along with text qualifiers, you can handle them using regular expressions and the quotechar parameter.
# Assuming the CSV file uses commas and # semicolons as separators and double quotes # as text qualifiers df = pd.read_csv("data.csv", sep='[;,]', quotechar='"', engine='python') # Display the Dataframe print(df)
Handling CSV with Categorical Data
If your CSV file contains categorical data, you can explicitly specify the data type as a categorical variable using the dtype parameter to optimize memory usage.
# Assuming the 'Category' column contains categorical data df = pd.read_csv("data.csv", dtype={'Category': 'category'}) # Display the Dataframe print(df)
Converting CSV with Large Datasets and Memory Optimization
For extremely large CSV files that may exceed available memory, you can use dask.dataframe to perform distributed computing.
# Assuming you have Dask installed import dask.dataframe as dd # Reading a large CSV file using Dask df = dd.read_csv("data.csv") # Perform computations on the Dask Dataframe result_df = df.groupby('Category').sum().compute() # Display the result Dataframe print(result_df)
References –
Pandas Official Reference
Towards datascience reference
Pandas Read CSV – w3schools reference
Last Updated on August 6, 2023 by admin