# Check if dataframe contains infinity in Python – Pandas

When working with data in Python using Pandas, it is important to ensure that the data is clean and contains no unexpected values that could lead to errors in analysis or modeling. One such unexpected value is infinity. In this article, we will explore how to check if a Pandas dataframe contains infinity values.

## Method 1: Using NumPy

The NumPy library provides a convenient way to check if a dataframe contains infinity values. We can use the `isinf()` function from NumPy to check for infinity values in the dataframe. Here is an example:

``````
import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [1, 2, np.inf], 'B': [4, np.inf, 6]})

if np.isinf(df.values).any():
print("Dataframe contains infinity values.")
else:
print("Dataframe does not contain infinity values.")
``````

In this example, we first create a Pandas dataframe with some values, including infinity values. We then use the `isinf()` function from NumPy to check for infinity values in the dataframe. The `any()` function is used to check if any of the values are infinity. If any of the values are infinity, the message “Dataframe contains infinity values.” is printed. Otherwise, the message “Dataframe does not contain infinity values.” is printed.

## Method 2: Using Pandas

Pandas also provides a way to check if a dataframe contains infinity values using the `isin()` method. Here is an example:

``````

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [1, 2, np.inf], 'B': [4, np.inf, 6]})

if df.isin([np.inf, -np.inf]).any().any():
print("Dataframe contains infinity values.")
else:
print("Dataframe does not contain infinity values.")
``````

In this example, we again create a Pandas dataframe with some values, including infinity values. We then use the `isin()` method to check for infinity values in the dataframe. The `any()` function is used twice to check if any of the values are infinity or negative infinity. If any of the values are infinity or negative infinity, the message “Dataframe contains infinity values.” is printed. Otherwise, the message “Dataframe does not contain infinity values.” is printed.

Conclusive Example code –

```import numpy as np
import pandas as pd

# Creating a sample DataFrame
df = pd.DataFrame({
'col1': [1.0, 2.0, np.inf, 4.0],
'col2': [5.0, np.inf, 7.0, 8.0]
})

# Method 1: Using isin() method with a list of infinity values
inf_values = [np.inf, -np.inf]
has_inf = df.isin(inf_values).any().any()
print("Method 1: Does the DataFrame have infinity? ", has_inf)

# Method 2: Using numpy's isinf() method
has_inf = np.isinf(df.values).any()
print("Method 2: Does the DataFrame have infinity? ", has_inf)

# Method 3: Using numpy's isinf() method with DataFrame's replace() method
df = df.replace([np.inf, -np.inf], np.nan)
has_inf = df.isnull().values.any()
print("Method 3: Does the DataFrame have infinity? ", has_inf)

```

These code examples demonstrate three different methods for checking whether a Pandas DataFrame contains infinity. The first method uses the `isin()` method with a list of infinity values, the second method uses numpy’s `isinf()` method, and the third method uses numpy’s `isinf()` method with the DataFrame’s `replace()` method to convert infinity values to `NaN`. All three methods provide a simple and efficient way to check for infinity in a DataFrame.

Last Updated on May 11, 2023 by admin

## Highlight the maximum value in each column in PandasHighlight the maximum value in each column in Pandas

Highlight the maximum value in each column in Pandas Let’s discuss how to highlight the

## Python – Pandas Series.str.contains()Python – Pandas Series.str.contains()

sSeries.str can be used to access the values of the series as strings and apply

## Pandas.Categorical()Pandas.Categorical()

Python | Pandas.Categorical() pandas.Categorical(val, categories = None, ordered = None, dtype = None) : It represents

## Sort a Pandas Series in PythonSort a Pandas Series in Python

Sort a Pandas Series in Python Series is a one-dimensional labeled array capable of holding data

## Pandas Index.summary()Pandas Index.summary()

Python | Pandas Index.summary() Python is a great language for doing data analysis, primarily because

## Convert Excel to CSV in PythonConvert Excel to CSV in Python

Convert Excel to CSV in Python   In this article, we will be dealing with

## Reverting from multiindex to single index dataframe in PandasReverting from multiindex to single index dataframe in Pandas

Reverting from multiindex to single index dataframe in Pandas In this article, we will be

## Pandas Index.equals()Pandas Index.equals()

Python | Pandas Index.equals() Python is a great language for doing data analysis, primarily because